上海市医学图像处理与计算机辅助手术重点实验室

上海市医学图像处理与计算机辅助手术重点实验室

    • 复旦大学上海医学院-上海市医学图像处理与计算机辅助手术重点实验室-外观图
    • 复旦大学-博学而笃志,切问而近思
    • 复旦大学上海医学院-上海市医学图像处理与计算机辅助手术重点实验室

    优秀论文

    [Scientific Data] Eye-tracking dataset of endoscopist-AI teaming during colonoscopy: Retrospective and real-time acquisition

    发表时间:2025-02-07

    Eye-tracking dataset of endoscopist-AI teaming during colonoscopy: Retrospective and real-time acquisition


    Yan Zhu*, Rui-Jie Yang*, Pei-Yao Fu*, Zhen Zhang, Yi-Zhe Zhang, Quan-Lin Li, Shuo Wang, Ping-Hong Zhou


    Scientific Data (IF=5.8)


    Abstract

     Recent studies have demonstrated that integrating AI into colonoscopy procedures significantly improves the adenoma detection rate (ADR) and reduces the adenoma miss rate (AMR). However, few studies address the critical issue of endoscopist-AI collaboration in real-world settings. Eye-tracking data collection is considered a promising approach to uncovering how endoscopists and AI interact and influence each other during colonoscopy procedures. A common limitation of existing studies is their reliance on retrospective video clips, which fail to capture the dynamic demands of real-time colonoscopy, where endoscopists must simultaneously navigate the colonoscope and identify lesions on the screen. To address this gap, we established a dataset to analyze changes in endoscopists’ eye movements during the colonoscopy withdrawal phase. Eye-tracking data was collected from graduate students, nurses, senior endoscopists, and novice endoscopists while they reviewed retrospectively recorded colonoscopy withdrawal videos, both with and without computer-aided detection (CADe) assistance. Furthermore, 80 real-time video segments were prospectively collected during endoscopists’ actual colonoscopy withdrawal procedures, comprising 43 segments with CADe assistance and 37 segments without assistance (normal control).