上海市医学图像处理与计算机辅助手术重点实验室

上海市医学图像处理与计算机辅助手术重点实验室

    • 复旦大学上海医学院-上海市医学图像处理与计算机辅助手术重点实验室-外观图
    • 复旦大学-博学而笃志,切问而近思
    • 复旦大学上海医学院-上海市医学图像处理与计算机辅助手术重点实验室

    优秀论文

    [IJCV] Globally Optimal Linear Model Fitting with Unit-Norm Constraint

    发表时间:2022-02-22

    Globally Optimal Linear Model Fitting with Unit-Norm Constraint

    Yinlong Liu*, Yiru Wang*, Manning Wang, Guang Chen, Alois Knoll, Zhijian Song

    International Journal of Computer Vision (2022, IF=7.410)

    Abstract

    Robustly fitting a linear model from outlier-contaminated data is an important and basic task in many scientific fields, and it is often tackled by consensus set maximization. There have been several studies on globally optimal methods for consensus set maximization, but most of them are currently confined to problems with small number of input observations and low outlier ratios. In this paper, we develop a globally optimal algorithm aiming at consensus set maximization to solve the robust linear model fitting problems with the unit-norm constraint, which is based on the branch-and-bound optimization framework. The unit-norm constraint is utilized to fix the unknown scale of linear model parameters, and we propose a compact representation of the unit-bounded searching domain to avoid introducing the additional non-linearity in the unit-norm constraint. The compact representation leads to a geometrically derived bound, which accelerates the calculation and enables the method to handle the problems with large number of observations. Experiments on both synthetic and real data show that the proposed algorithm outperforms existing globally optimal methods, especially in low dimensional problems with large number of input observations and high outlier ratios.



    Paper Link: https://link.springer.com/article/10.1007/s11263-022-01574-z

    Code Link: https://github.com/YiruWangYuri/Demo-for-GoCR